Integrated Modeling of Optical Systems

IMOS

Laura Needels

818-354-4379

Laura.Needels@jpl.nasa.gov

CAUTION

 This material may not be shared with Foreign Nationals.

Presentation

- Modeling
- Integrated Modeling
- The Progress of Integrated Modeling
- Examples of Integrated Modeling
- IMOS overview
- IMOS Specifics
- Why is IMOS interested in STEP?

What is Modeling?

How does the structure vibrate? How does the structure deform?

How hot/cold does it get?

How good is the image? What if a mirror is misaligned?

How precisely will the alignment be maintained? How well can disturbances be filtered?

Other Types Of Modeling (Not Part Of IMOS)

- Cost Modeling
 - If * people are used and the requirements are *, then the total \$\$\$ will be *.
 - If more money is spent on better hardware, then less integration time will be needed, and *** dollars will be saved.
- Software Algorithm Timing
 - Can a more sophisticated/accurate star-centroiding algorithm be implemented for a * Hz cycle?

What Is Integrated Modeling?

Conventional Modeling

IMOS/MACOS

Integrated Modeling

IMOS --- >Finite Element Modeling, simple Optics, some Thermal MACOS --- > Optics Modeling Matlab Toolbox -- > Controls Modeling, Optimization, + more

The Differences Between "The Past", "Other IM Tools" and "IMOS"

"The Past"

- the structural modeler would generated the mass & stiffness matrices (or the frequencies and mode shapes)
- the controls modeler would develop stability plots for pointing
- the optics modeler would generated optical performance metrics

The Differences Between "The Past", "Other IM Tools" and "IMOS"

- Other "Integrated" Modeling Tools use (nearly) common models & "translation" to get from one tool to another.
 - the NASTRAN Finite Element Model is translated to a thermal program's input deck (structures)
 - the thermal program is started, and thermal analysis is completed
 - temperatures are passed back to structural modeler who calculates the (e.g.) deformations

The Differences Between "The Past", "Other IM Tools" and "IMOS"

- IMOS Analysis is available within a single (environment) (tool)
 - mass & stiffness matrices can be calculated
 - thermal conductances can be added (either calculated using geometric properties or input as a number)
 - temperatures can be calculated
 - optical performance can be calculated (e.g. geometric ray trace)

Integrated Modeling Examples

- How well can a given controller maintain imaging performance under realistic disturbances?
 - RW vibrations affect the structure. This misaligns the optics. Could include closed loop control system.
 - Solar radiation is a thermal input. Heating causes temperatures to rise. Changing temperatures cause structure to deform. Again, the optics are now misaligned.
- What heater location minimizes wavefront error on a mirror?
 - Optimally solve for heater locations which give the best improvement in wavefront error on mirror. (Optimization, thermal, structures, optics).
- How do the reaction wheel vibrations affect the image quality?
- Cross-disciplinary model validation.

IMOS

IMOS Specifics

Structural Analysis

Finite Element Analysis

> element types - truss, beam, plate (quadrilaterals & triangles), solid elements (coming soon), rigid (RBE2, RBE3), multi-point constraints

> material properties - MAT1, MAT2, MAT8, MAT9 (coming soon), PCOMP

- (calculates properties for laminates)other springs, concentrated masses, local coordinates, arbitrary node
- numbering
- > analysis types static (loads), dynamic (eigenvalues), buckling, strain energy
- > substructuring (coming soon)
- > translation NASTRAN to IMOS, IMOS to NASTRAN

- Statistical Energy Analysis

> a very limited amount of capability, more coming soon

IMOS Specifics

Constant G(Temp) Radiation

- Thermal Analysis
 - Steady State and Transient Solvers
 - linear conductors & radiation conductors, temperature dependent linear conductors, temperature dependant heat capacitance (nodes)
 - > time dependent heaters
 - > variable levels of convergence
 - > user logic (coming soon)
 - Assistance In Generating Conductor And Heat Capacitance Values
 - > use of geometric properties used in finite element model
 - Interfaces To Other Thermal Tools
 - > IMOS to SINDA
 - > SINDA to IMOS
 - > IMOS to TSS

IMOS Specifics

Optical Analysis

- > geometric ray trace
- > conic surfaces

- > Surface Types (flats, conics, 10th order aspheres, Zernike, monomial, anamorphic, user-defined, interpolated)
- > Element Types (refractors, reflectors, lens arrays, reflective gratings, holographic optical elements, reference or dummy, focal planes, segmented mirrors, reflective non-sequential, refractive non-sequential)
- > Obscurations & Apertures
- > Coatings
- > Geometric Ray Trace and Diffraction (near field & far field)
- > Polarized Light
- > Source Types (Collimated, Converging, Diverging)
- > Source Profiles (uniform, Gaussian, cosine-to-a-power, dipole)
- > Differential Ray Tracing and Linear Optical Models

Why is IMOS interested in STEP?

- Radiation Calculations & Orbital Heating
 - too expensive and time consuming to introduce a sufficient level of detail needed for problems